
Data Identification using L-CBF

V.Srilatha, Dr. Rudra Pratap Das, S. Rama Krishna

Dept. of E.C.E, Pydah College Of Engineering & Technology,
Visakhapatnam, A.P, India

Abstract— counting bloom filters (CBFs) are used to improve
upon the energy, delay, and complexity of various processor
structures. CBFs improve the energy and speed of
membership tests by maintaining an imprecise and compact
representation of a large set to be searched. This studies the
energy, delay, and area characteristics of two implementations
for CBFs using full custom layouts in a commercial 0.13- m
fabrication technology. One implementation, S-CBF, uses an
SRAM array of counts and a shared up/down counter. Our
proposed implementation, L-CBF, utilizes an array of
up/down linear feedback shift registers and local zero
detectors. Circuit simulations show that for a 1 K-entry CBF
with a 15-bit count per entry, L-CBF compared to S-CBF is
3.7 or 1.6 faster and requires 2.3 or 1.4 less energy depending
on the operation. Additionally, this presents analytical energy
and delay models for L-CBF. Our results demonstrate that for
a variety of L-CBF organizations, the estimations by
analytical models are within 5% and 10% of Spectre
simulation results for delay and energy, respectively.

 INTRODUCTION
Many architectural techniques have relied on hardware
counting bloom filters (CBFs) to improve upon the power,
delay, and complexity of various processor structures. For
example, CBFs have been used to improve performance
and power in snoop coherent multiprocessor or multi-core
systems. CBFs have been also utilized to improve the
scalability of load/store scheduling queues and to reduce
instruction replays by assisting in early miss determination
at the L1 data cache. In these applications, CBFs help
eliminate broadcasts over the interconnection network in
multiprocessor systems, CBFs also help reduce accesses to
much larger and thus much slower and power-hungry
content addressable memories, or cache tag arrays. In all
above mentioned hardware applications, CBFs improve the
energy and speed of membership tests. Checking whether a
memory block is currently cached is an example of a
membership test in processors.
The CBF provides a definite answer for behavior determine
how many membership tests can be serviced by the CBF.
The second factor is the energy and delay characteristics of
the CBF. The more membership tests are serviced by the
CBF “alone” and the more speed and energy efficient the
CBF implementation is, the higher the benefits. If the key
distribution is not known, or too complicated to yield to
analysis, then the use of a particular hash function may
have adverse effects: it may magnify correlations among
keys and fill the hash table non-uniformly. In universal
hashing, one of several hash functions is chosen at random.
Here, we see a different technique in Bloom filters, several
hash functions are applied to each key. Again, this allows
us to use simple hash functions while at the same time
minimizing the effects of any particular hash function.
The main purpose of Bloom filters is to build a space data
structure for set membership. Indeed, to maximize space

efficiency, correctness is sacrificed: if a given key is not in
the set, then a Bloom filter may give the wrong answer (this
is called a false positive), but the probability of such a
wrong answer can be made small. A typical application of
Bloom filters is web caching. An ISP may keep several
levels of carefully located caches to speed up the loading of
commonly viewed web pages, in particular for large data
objects, such as images and videos. If a client requests a
particular URL, then the service needs to determine quickly
if the requested page is in one of its caches. False positives,
while undesirable, are acceptable: if it turns out that a page
thought to be in a cache is not there, it will be loaded from
its native URL, and the penalty is not much worse than not
having the cache in the first place.
The significant contributions of this work are as follows. 1)
It proposes L-CBF, a novel, energy and speed efficient
implementation for CBFs. 2) It compares the energy, delay
and area of two CBF implementations, L-CBF and S-CBF
using their circuit level implementations and full-custom
layouts in 0.13-m fabrication technology. 3) It presents
analytical delay and energy models for L-CBF and
compares the model estimations against simulation results.

 CBFs
This section reviews CBFs and their characteristics.
Additionally, it discusses the previously assumed
implementation for the CBFs, which has not been
investigated at the physical level.
Introduction to CBFs:

Figure 1: CBF as black box.

1) CBF as a Black Box: As shown in Fig. 1, a CBF is
conceptually an array of counts indexed via a hash function
of the element under membership test. A CBF has three
operations:1) increment count (INC); 2) decrement count
(DEC); and 3) test if the count is zero (PROBE). The first
two operations increment or decrement the corresponding
count by one, and the third one checks if the count is zero
and returns true or false(single-bit output). We will refer to
the first two operations as updates and to the third one as a
probe. A CBF is characterized by its number of entries and
the width of the count per entry.
2) CBF Characteristics: Membership tests using CBFs are
performed by probe operations. In response to a

V.Srilatha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (6), 2012,5378-5383

www.ijcsit.com 5378

membership test, a CBF provides one of the following two
answers: 1) “definite no,” indicating that the element is
definitely not a member of the large set and 2) “I don’t
know,” implying that the CBF cannot assist in a
membership test, and the large set must be searched. The
CBF is capable of producing the desired answer to a
membership test much faster and saves power on two
conditions. First, accessing the CBF is significantly faster
and requires much less energy than accessing the large set.
Second, most membership tests are serviced by the CBF.
Ideally, in the CBF, a separate entry would exist for every
element of the set. In this case, the CBF would be capable
of precisely representing any set. However, this would
require a prohibitively large array negating any benefits. In
practice, the CBF is a small array and the element
addresses are hashed onto this small array. Because of
hashing, multiple addresses may map onto the same array
entry. Hence, the CBF constitutes an imprecise
representation of the content of the large set and keeps a
superset of the existing elements. This impreciseness is the
reason of the “I don’t know” answers by the CBF. To
reduce the frequency of such answers, and hence improving
accuracy, multiple CBFs with different hash functions can
be used.An “I don’t know” answer to a membership test
incurs power and delay penalty since in case of such an
answer, the large set must be checked in addition to the
CBF. The delay penalty occurs if the CBF and the large set
accesses are serialized. This delay penalty can be avoided if
we probe the CBF and the large set in parallel; in this case,
power benefits will be possible only if the in-progress
access to the large set can be terminated once the CBF
provides a definite answer. These overheads do not concern
us as often CBF can provide the definite answer.
3) CBF Functionality: The CBF operates as follows.
Initially all counts are set to zero and the large set is empty.
When an element is inserted into, or deleted from the large
set, the corresponding CBF count is incremented or
decremented by one. To test whether an element currently
exists in the large set, the corresponding CBF count is
inspected. If the count is zero, the element is definitely not
in the large set;
B. S-CBF: SRAM-Based CBF Implementation
Previous work assumes a CBF implementation consisting
of an SRAM array of counts, a shared up/down counter, a
zero comparator, and a small controller.

 Figure2: Architecture of S-CBF

The architecture of S-CBF is depicted in Fig. 2. Updates
are implemented as read-modify-write sequences as
follows: 1) the count is read from the SRAM; 2) itis
adjusted using the counter; and 3) it is written back to the
SRAM. The probe operation is implemented as a read from
the SRAM, and a compare with zero using the zero-
comparator. A small controller coordinates this sequence of
actions. An optimization was proposed to speed up probe
operations and to reduce their power. Specifically, an extra
bit Z is added to each count. When the count is nonzero the
Z is set to false and when the count is zero, the Z is set to
true. Probes can now simply inspect Z . The Z bits can be
implemented as a separate SRAM structure which is faster
and requires much less power. This type of optimization is
compatible with both S-CBF and L-CBF architectures

L-CBF: LFSR-BASED CBF IMPLEMENTATION
More energy in S-CBF is consumed on the SRAM’s
bitlines and wordlines. Additionally, in S-CBF, both delay
and energy suffer as updates require two SRAM accesses
per operation. The shared counter may increase the energy
and the delay further. We could avoid accesses over long
bitlines by building an array of up/down counters with local
zero detectors. In this way, CBF operations would be
localized and there would be no needto read/write values
over long bitlines. L-CBF is such a design. For the CBF,
the actual count values are not important and we only care
whether a count is “zero” or “nonzero.” Hence, any counter
that provides a deterministic up/down sequence can be a
choice of counter for the CBF. L-CBF consists of an array
of up/down LFSRs with embedded zero detectors. L-CBF
employs up/down LFSRs that offer a better delay, power,
and complexity tradeoff than other synchronous up/down
counters with the same count sequence length. L-CBF
significantly reduces energy and delay compared to S-CBF
at the cost of more area. The increase in area though is a
minor concern in modern processor designs given the
abundance of on-chip resources and the very small area of
the CBF compared to most other processor structures.

A. LFSRs A maximum-length -bit LFSR sequences
through states. It goes through all possible code
permutations except one. The LFSR consists of a shift
register and a few embedded XNOR gates fed by a
feedback loop. Each LFSR has the following defining
parameters:

• width, or size, of the LFSR (it is equal to the number of
bitsin the shift register);
• number and positions of taps (taps are special locations in
the LFSR that have a connection with the feedback loop);
• initial state of the LFSR which can be any value except
one (all ones for XNOR feedback).

State transitions proceed as follows. The non-tapped bits
are shifted from the previous position. The tapped bits are
XNORed with the feedback loop before being shifted to the
next position. The combination of the taps and their
locations can be represented by a polynomial. Fig. 3 shows
an 8-bit maximum-length Galois LFSR, its taps, and
polynomial.

V.Srilatha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (6), 2012,5378-5383

www.ijcsit.com 5379

Figure : Eight bit maximum length LFSR.

By appropriately selecting the tap locations it is always
possible to build a maximum-length LFSR of any width
with either two or four taps. Additionally, ignoring wire
length delays and the fan-out of the feedback path, the
delays of the maximum length LFSR is independent of its
width (size). Delay increases only slightly with size,
primarily due to increased capacitance on the control lines.

Figure : Three-bit maximum-length up/down LFSR.

1) Up/Down LFSRs: The tap locations for a
maximum- length, unidirectional -bit LFSR can be
represented by a primitive polynomial g(x).
g(x)=∑CiX

i (C0 = Cn =1)
in the above equation Xi corresponds to the output of the
bit of the shift register and the constants are either 0 (no
tap) or 1 (tap). Given , a primitive polynomial for an LFSR
generates the reverse sequence as
h(x)=∑ Ci X

n-i (C0 = Cn =1)
The superposition of the two LFSRs (the original and its
reverse) forms a reversible “up/down” LFSR. The up/down
LFSR consists of a shift register similar to the one used for
the unidirectional LFSR; a 2-to-1 multiplexer per bit to
control the shift direction; and twice as many XNOR gates
as the unidirectional LFSR. Fig. 4 shows the construction
of a 3-bit maximum-length up/down LFSR. It also depicts
the polynomials and count sequence of both up and down
directions. In general, it is possible to construct a
maximum-length up/down LFSR of any width with two or
six XNOR gates (i.e., four or eight taps).
2) Comparison With Other Up/Down Counters: In this
section, we compare LFSR counters with other
synchronous up/down counters that could be a choice of
counter for CBFs. We restrict our discussion to
synchronous up/down counters of width n with a count
sequence of at least 2n-1states.The simplest type of
synchronous counter is the binary modulo-2n n-bit counter.
For this counter, speed and area are conflicting qualities
due to carry propagation. In applications where the count
sequence is unimportant [e.g., pointers of circular first-
inputs–first-outputs (FIFOs) and frequency dividers], an
LFSR counter offers aspeed-power-area efficient solution.
The delay of an LFSR is nearly independent of its size.

Specifically, the LFSR delay consists of a flip-flop delay,
an XNOR gate delay, and a feedback loop delay. The
feedback loop delay is the propagation delay of the last
flip-flop output to the input of the furthest XNOR gate from
the last flip-flop. Ignoring secondary effects on the
feedback path, the delay of an n-bit maximum length LFSR
is O(1) and independent of the counter size. These
characteristics make LFSRs a suitable counter choice for
CBFs.

Fig. 5. Architecture of L-CBF; the basic cells of an

up/down

(a) Two-phase flip-flop;

(b) 2-to-1 multiplexer;

(c) XNOR gate;

V.Srilatha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (6), 2012,5378-5383

www.ijcsit.com 5380

(d) a bit-slice of the embedded zero detector

A.L-CBF Implementation
Fig. 5 depicts the high-level organization of L-CBF. L-CBF
includes a hierarchical decoder and a hierarchical output
multiplexer. The core of the design is an array of up/down
LFSRs and zero detectors. The L-CBF design is divided
into several partitions where each row of a partition
consists of an up/down LFSR and a zero detector. L-CBF
accepts three inputs and produces a single-bit output is-
zero. The input operation select specifies the type of
operation: INC, DEC, PROBE, and IDLE. The input
address specifies the address in question and the input reset
is used to initialize all LFSRs to the zero state. The LFSRs
utilize two non-overlapping phase clocks generated
internally from an external clock. We use a hierarchical
decoder for decoding the address to minimize the energy-
delay product. The decoder consists of a pre decoding
stage, a global decoder to select the appropriate partition,
and a set of local decoders, one per partition. Each partition
has a shared local is-zero output. A hierarchical multiplexer
collects the local is-zero signals and provides the single-bit
is-zero output. Fig. 5 also depicts the basic cells of each
up/down LFSR and zero decoder. Shown are the flip-flop
used in the shift registers, the multiplexer that controls the
direction of change (“up”/”down”), the XNOR gate, and a
bit-slice of the zero decoder.

EXPERIMENTAL RESULTS
This section compares the energy, delay, and area of S-
CBF and L-CBF. Moreover, this section compares the
analytical model estimations against simulation results for
L-CBF. We compare S-CBF and L-CBF on a per operation
basis. Both designs are implemented using the Cadence(R)
tool set in a commercial 0.13- m fabrication technology.
We developed a transistor-level implementation and a full-
custom layout for both designs that were optimized for the
energy-delay product. We employed Spectre for circuit
simulations. This is a vendor recommended simulator for
design validation prior to manufacturing. The rest of this
section is organized as follows. We initially consider a 1 K-
entry CBF with 15-bit counts as this configuration is
representative of the CBFs used in previous proposals.
Then, we present results for other CBF configurations.
Delay and Energy Per Operation
We compare implementations of a 1 K-entry, 15-bit count
per entry CBF. For S-CBF, an SRAM with a total capacity
of 15 Kbits is used. The SRAM is partitioned to minimize
the energy- delay product. For S-CBF, we do not consider
the delayand energy overhead of the shared counter since

our goal is to demonstrate that L-CBF consumes less
energy and is also faster. To further reduce energy for
probes in S-CBF, we introduce an extra bit per entry which
is updated only when the count changes from, or to, zero as
described in Section II-B
(Z-bits). On a probe, we only read this bit. Furthermore,
we apply a number of delay and power optimizations on S-
CBF. In detail, we implement the divided word line (DWL)
technique which adopts a two-stage hierarchical row
decoder structure. The DWL technique improves speed and
power. Moreover, we reduce power further via pulse
operation techniques for the word-lines, the periphery
circuits and the sense amplifiers. We also use multistage
static CMOS decoding and current-mode read and write
operations to further reduce power. For L-CBF, we utilize
16-bit LFSRs such that the LFSR can count at least
215values.

TABLE II ENERGY, DELAY, AND AREA OF S-CBF
AND L-CBF IMPLEMENTATIONS FOR A 1 K-

ENTRY, 15-BIT CBF

Table II shows the delay in picoseconds, the energy (static
and dynamic) per operation in pico joules, and the area in
square millimeters for both L-CBF and S-CBF. The last
column reports the ratio of S-CBF over L-CBF per metric.
The two rows per category report, respectively,
measurements for the update and probe operations. As
observed from Table II, L-CBF is 3.7 and 1.6 x faster than
S-CBF during update and probe operations, respectively. In
addition, L-CBF consumes 2.3 or 1.4x less energy than S-
CBFfor update and probe operations, respectively. These
significant gains in speed and energy consumption come at
the expense of more area. L-CBF requires about 3.2x more
area than S-CBF.
RTL Schematic
RTL View is a Register Transfer Level graphical
representation of the design. This representation (.ngr file
produced by Xilinx Synthesis Technology (XST)) is
generated by the synthesis tool at earlier stages of a
synthesis process when technology mapping is not yet
completed. The goal of this view is to be as close as
possible to the original HDL code. In the RTL view, the
design is represented in terms of macro blocks, such as
adders, multipliers, and registers. Standard combinatorial
logic is mapped onto logic gates, such as AND, NAND,
and OR.
1.TopPartition
The top partition has five single bit inputs and an 8 bit
input. It has eight single bit inputs and one 8 bit output. The
8 bit input data is the address of the item to be
added/deleted or checked from a list. The outputs depend
on the count of the item. There are eight individual
partitions described in the top partition.

V.Srilatha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (6), 2012,5378-5383

www.ijcsit.com 5381

Figure :Top Partition

2. Hash function
The hash function is used to enter/delete an item into/from
a list. When an item is checked weather it is in a particular
list the answer may be a false positive. The false
positiveness will be reduced by hash function. The input
data is 8 bit and it has 8 single bit outputs.

3. Partitions
The addresses of the item to be entered into the list or
deleted from the list or searched weather it is in the list or
not is decoded and given to the 8 individual partitions. The
each partition has a single bit output.

4. Gated clock

Figure:Gated Clock

The gated clock is an unit that has two inputs and output.
One input is 4 bit input data and the other is the type of
operation to be performed.

SIMULATION RESULTS
Simulation is a powerful and important tool because it
provides a way in which alternative designs, plans and/or
policies can be evaluated without having to experiment on
a real system, which may be prohibitively costly, time
consuming, or simply impractical to do.

1. Generating Hash function
The hash function is used to enter/delete an item into/from
a list. When an item is checked weather it is in a particular
list the answer may be a false positive. The false
positiveness will be reduced by hash function. The input
data is 8 bit and it has 8 single bit outputs.

 Figure :Generating hash function

2. Individual Partition

Figure : Individual partition result

The address of the item to be enter into the list or deleted
from the list or searched weather it is in the list or not is
decoded and given to the 8 individual partitions. The each
partition has a single bit output. The output of the partition
is either 1 or 0 based on whether the particular item is in
the list or not.

V.Srilatha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (6), 2012,5378-5383

www.ijcsit.com 5382

3. LFSR Count

The LFSR’s are used in up/down counters. When an item
enters into a list its count increased by 1.if an item deleted
from a set then the count will be decreased by 1. An LFSR
is a shift register that, when clocked, advances the signal
through the register from one bit to the next most-
significant bit . Some of the outputs are combined in
exclusive OR configuration to form a feedback mechanism.
A linear feedback shift register can be formed by
performing exclusive OR on the outputs of two or more of
the flip-flops together and feeding those outputs back into
the input of one of the flip-flops.

CONCLUSION
In this thesis the investigation of physical level
implementations of CBFs is done and proposed LCBF.
LCBF is a novel implementation consisting of an array of
up/down LFSRs and zero detectors. Compare LCBF with
SCBF is made. SCBF is the previously assumed
implementation consisting of an SRAM array of counts and
a shared counter. LCBF is superior to SCBF in both delay
and speed at the expense of more area. The proposed LCBF
is a novel implementation consisting of an array of
up/down LFSRs and zero detectors. It will test the
membership of the set by Increment, Decrement and probe
operations in LFSR .It will produce the single out “is zero“.
Comparisons demonstrate that the estimations provided by
the models are in satisfying agreement with the simulation
results.

REFERENCES
 [1] A. Moshovos, “RegionScout: Exploiting coarse-grain sharing in

snoop-coherence,” in Proc. Ann. Int. Symp. Comput. Arch., Jun.
2005, pp. 234–245.

[2] A. Moshovos, G. Memik, B. Falsafi, and A. Choudhary, “Jetty:
Filtering snoops for reduced energy consumption in smp servers,” in
Proc. Ann. Int. Conf. High-PerformanceComput. Arch., Feb. 2001,
pp. 85–96.

[3] S. Sethumadhavan, R. Desikan, D. Burger, C. R. Moore, and S. W.
Keckler, “Scalable hardware memory disambiguation for high-ILP
processors,” IEEE Micro, vol. 24, no. 6, pp. 118–127, Nov. 2004.

[4] J. K. Peir, S. C. Lai, S. L. Lu, J. Stark, and K. Lai, “Bloom filtering
cache misses for accurate data speculation and prefetching,” in
Proc.Ann. Int. Conf. Supercomput., Jun. 2002, pp. 189–198.

[5] M. R. Stan, “Synchronous up/down counter with clock period
independent of counter size,” in Proc. Ann. Symp. Comput.

Arithmetic, Jul. 1997, pp. 274–281.

V.Srilatha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (6), 2012,5378-5383

www.ijcsit.com 5383

